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Abstract 
The main focus of this work is on Buckling Analysis of Isotropic Thick Rectangular Plates using Polynomial Displacement Functions. The thick 
rectangular plate is subjected to uniaxial in-plane compressive loading, Nx.  Orthogonal Polynomial Displacement Functions (OPDF) and a polynomial 
shear deformation function f(z) were used in deriving the direct governing equations for an isotropic thick rectangular plate. A thick rectangular plate with 
all the edges simply supported (SSSS) was considered for the detailed numerical study. Satisfying the boundary conditions for the SSSS plate, the direct 
governing equation was solved to obtain a simple analytical equation used in generating the non-dimensional critical buckling load parameters of the 
plates at different values of span-depth ratio (a/t) and aspect ratios (b/a). Results from the present study were compared with the works of other 
researchers to verify the validity of the present results. 
 
Keywords: displacement functions, in-plane-displacements, out of plane displacement, thick plates, shear rotation, buckling and rectangular. 
 
1. INTRODUCTION  
In Structural Engineering, rectangular plates find numerous 
applications. The plates are mostly subjected to transverse, 
compressive and sometimes dynamic loads acting in the 
middle plane of the plate. When a plate is subjected to 
forces applied at the boundary parallel to the mid-plane of 
the plate and distributed uniformly over the plate’s 
thickness, the state of loading is called an in-plane 
compressive loading [11]. In-plane loading causes a plate to 
buckle or become elastically unstable. The commencement 
of instability is called buckling [8]. Critical buckling load is 
the magnitude of the in-plane compressive axial forces at 
which the plate becomes unstable. If the in-plane 
compressive load applied to the plate are further increased 
beyond their critical values, very large deflections and 
bending stresses will occur which will eventually lead to 
complete failure of the plate. The famous classical plate 
theory (CPT) which neglects the effects of transverse shear 
deformation provides good results for thin plates only and 
over-estimates the critical buckling loads of thick plates. 
Mindlin [4], developed a displacement based first order 
shear deformation theory (FSDT) which considers the effect 
of transverse shear deformation by assuming linear 
variation of the in-plane displacements across the plate’s 
thickness. These theories however, does not satisfy the zero 
traction boundary conditions on top and bottom surfaces of 
the plate and thus requires shear correction factor to satisfy 
the constitutive relations for transverse shear stresses and 
strains [8]. These drawbacks of the (CPT) and (FSDT) gave 
rise to the development of higher order shear deformation 
theories (HSDT). HSDT seek to get the realistic variation of 
the transverse shear strains and stresses through the 
thickness of plate by assuming parabolic (higher order 
parabolas) shear strain variation across the thickness [5].  
 
 
 
 
  

Gunjal et al. [2] used a refined trigonometric shear 
deformation function in the buckling analysis of thick 
isotropic square and rectangular plates. Sayyad and Ghugal 
[8] used exponential shear deformation function to carry 
out bi-directional bending and free vibration analysis of 
thick isotropic square and rectangular plates. Sayyad and 
Ghugal [9] applied exponential shear deformation function 
in the buckling analysis of thick isotropic square plates 
subjected to uniaxial and biaxial in-plane loads. Akavci [1] 
worked on Buckling and free vibration analysis of 
symmetric and antisymmetric laminated composite plates 
on an elastic foundation using trigonometric shear 
deformation function. Rajesh and Meera [7] applied 
trigonometric functions as displacement and shear 
deformation functions in their work on ‘linear free-
vibration analysis of rectangular mindlin plates using 
coupled displacement field method. Hashemi and 
Arsanjani [3], used trigonometric functions as displacement 
and shear deformation functions in their work on Exact 
Characteristic Equations for Some of Classical Boundary 
Conditions of Vibrating Moderately Thick Rectangular 
Plates. Serdoun and Hamza-Cherif [10] worked on Free 
Vibration Analysis of Isotropic Plates by Alternative 
Hierarchical Finite Element Method Based on Reddy’s C1 
HSDT. In the present work, a polynomial shear 
deformation function and polynomial displacement 
functions were used for buckling analysis of isotropic thick 
rectangular plates with all edges simply supported.   
 
2 MATHEMATICAL FORMULATION OF THE 
PRESENT THEORY  
 
 
 
 
 
 
 Figure 1:  A Rectangular Plate. 
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Consider an isotropic rectangular plate with length ‘a’ in x-
direction, width ‘b’ in y-direction, and thickness ‘h’ in z-
direction. The z-direction is assumed positive in downward 
direction. The plate occupies a region 0 ≤ x ≤ a, 0 ≤ y ≤ b, -
t/2 ≤ z ≤ t/2 in Cartesian coordinate systems. The aspect 
ratio is P given as P = b/a. the non-dimensional coordinates 
(R = x/a  and Q = y/b) occupy domain 0 ≤ R ≤ 1 and 0 ≤ Q 
≤ 1. The aim of buckling analysis of plates is to determine 
the critical buckling loads. 
 
Displacement Field: The displacement field include two in-
plane displacements (u and v) and one out of plane 
displacement w. The displacement field (u, v and w) of the 
present theory are given by Onyechere (2018) as: 

𝑢 = −𝑧
𝜕𝑤
𝜕𝑥

+ 𝑓(𝑧).∅𝑥  (1) 

𝑣 = −𝑧
𝜕𝑤
𝜕𝑦

+ 𝑓(𝑧).∅𝑦   (2)  

𝑤(𝑥,𝑦) =  𝑤𝑥 .𝑤𝑦 = (𝑎0 + 𝑎1𝑅 + 𝑎2𝑅2 + 𝑎3𝑅3 + 𝑎4𝑅4)
∗ (𝑏0 + 𝑏1𝑄 + 𝑏2𝑄2 + 𝑏3𝑄3 + 𝑏4𝑄4)   (3𝑎) 

∅𝑥 =  𝐶𝑎.
𝜕𝑤
𝜕𝑥

, ∅𝑦

= 𝐶b.
𝜕𝑤
𝜕𝑦

 ,   𝐶𝑎 and 𝐶𝑏 are constants     (3𝑏) 

Where; f(z), Øx and Øy represent the shear deformation 
function, the shear rotations in x and y axes respectively. 
 
Boundary Conditions: A close look at Equation (3a) shows 
that it is a product of two orthogonal beams; one in x(R)-
axis and the other in the y(Q)-axis. The out-of-plane 
displacement, w for the two beams are given as Equations 
(4a) and (4b) respectively. 
𝑤𝑥 = (𝑎0 + 𝑎1𝑅 + 𝑎2𝑅2 + 𝑎3𝑅3 + 𝑎4𝑅4)     (4𝑎) 
𝑤𝑦 = (𝑏0 + 𝑏1𝑄 + 𝑏2𝑄2 + 𝑏3𝑄3 + 𝑏4𝑄4)     (4𝑏) 
For the beam simply supported at both edges, the 
boundary conditions are as;  

(i)𝐴𝑡 𝑅 =  0;  𝑤𝑥 = 0,
𝜕2𝑤𝑥
𝜕𝑅2

= 0  (ii) 𝐴𝑡 𝑅 =  1; 𝑤𝑥

= 0,   
𝜕2𝑤𝑥
𝜕𝑅2

= 0    (5) 
Substituting Equation (5) into Equation (3a), Equation (6) is 
obtained. 
𝑎0 = 0, 𝑎2 = 0, 𝑎1 = 𝑎4,𝑎3 = −2𝑎4  (6) 
Substituting Equation (6) into Equation (3a), Equation (7a) 
is obtained. 
𝑤𝑥 = 𝑎4(𝑅 − 2𝑅3 + 𝑅4)    (7𝑎) 
Similarly, repeating the same procedures for the beam in y 
(Q) - direction, Equation (7b) is obtained. 
𝑤𝑦 = 𝑏4(𝑄 − 2𝑄3 + 𝑄4) (7𝑏). 
Thus, for the rectangular plate simply supported at all 
edges, we obtain; 
𝑤 = 𝑤𝑥 .𝑤𝑦 = 𝑎4(𝑅 − 2𝑅3 + 𝑅4). 𝑏4(𝑄 − 2𝑄3 + 𝑄4)  (8) 
w = 𝐽1ℎ =  𝐽1(𝑅 − 2𝑅3 + 𝑅4). (𝑄 − 2𝑄3 + 𝑄4)    (9) 
𝑊ℎ𝑒𝑟𝑒;  𝐽1 = 𝑎4𝑏4 ,          ℎ

= (𝑅 − 2𝑅3 + 𝑅4). (𝑄 − 2𝑄3 + 𝑄4)   (10) 
h is the shape function for the SSSS thick plate, 𝐽1is the 
amplitude. 

Substituting Equation (9) into (3b) gives; 

∅𝑥 =  𝐽2.
𝜕ℎ
𝜕𝑥

=  
𝐽2
𝑎

.
𝜕ℎ
𝜕𝑅

  (11𝑎) 

 ∅𝑦 = 𝐽3.
𝜕ℎ
𝜕𝑦

  =
𝐽3
𝑏

.
𝜕ℎ
𝜕𝑄

    (11𝑏) 

Where;  𝐽2 =
𝐶𝑎. 𝐽1,   𝐽3 =
𝐶b.𝐽1,   𝐽1, 𝐽2, 𝐽3  are coefficients of the displacement  
Substituting equations (11a) and (11b) into equations (1) 
and (2) gives; 

𝑢 = −𝑧
𝜕𝑤
𝜕𝑥

+ 𝑓(𝑧).∅𝑥  =
1
𝑎

. �−𝑧𝐽1
𝜕ℎ
𝜕𝑅

+ 𝑓(𝑧). 𝐽2
𝜕ℎ
𝜕𝑅
�      

=
1
𝑎
𝜕ℎ
𝜕𝑅

. (−𝑧𝐽1 + 𝑓(𝑧). 𝐽2)  (12) 

𝑣 = −𝑧
𝜕𝑤
𝜕𝑦

+ 𝑓(𝑧).∅𝑦 =
1
𝑏
�−𝑧𝐽1

𝜕ℎ
𝜕𝑄

+ 𝑓(𝑧). 𝐽3.
𝜕ℎ
𝜕𝑄

�   

=   
1
𝑏
𝜕ℎ
𝜕𝑄

(−𝑧𝐽1 + 𝑓(𝑧). 𝐽3. )   (13)  

Strain Displacement Relations. 
Using strain-displacement relations of theory of elasticity, 
the strains used in the present theory are given as; 

ε𝑥  =  
𝜕𝑢
𝜕𝑥

=
1
𝑎

 
∂u
∂R

   =
1
𝑎2
𝜕2ℎ
𝜕𝑅2

. (−𝑧𝐽1 + 𝑓(𝑧). 𝐽2)    (14) 

ε𝑦  =  
𝜕𝑣
𝜕𝑦

=
1
𝑏

 
∂v
∂Q

 =
1
𝑏2
𝜕2ℎ
𝜕𝑄2 (−𝑧𝐽1 + 𝑓(𝑧). 𝐽3. )     (15)  

γ𝑥𝑦  =  
𝜕𝑢
𝜕𝑦

+
𝜕𝑣
𝜕𝑥

=
𝜕𝑢
𝑏𝜕𝑄

+
𝜕𝑣
𝑎𝜕𝑅

=
1
𝑎𝑏

𝜕2ℎ
𝜕𝑅𝜕𝑄

. (−𝑧𝐽1 + 𝑓(𝑧). 𝐽2)

+
1
𝑎𝑏

𝜕2ℎ
𝜕𝑅𝜕𝑄

. (−𝑧𝐽1 + 𝑓(𝑧). 𝐽3. )   (16)  

γ𝑥𝑧  =  
𝜕𝑢
𝜕𝑧

+
𝜕𝑤
𝜕𝑥

 =
1
𝑎
𝜕ℎ
𝜕𝑅

. �−𝐽1 +
𝜕
𝜕𝑧
𝑓(𝑧). 𝐽2� +  

1
𝑎
𝐽1  
∂h
∂R

=
𝜕
𝜕𝑧
𝑓(𝑧). 𝐽2  

1
𝑎
𝜕ℎ
𝜕𝑅

  (17) 

γ𝑦𝑧  =  
𝜕𝑣
𝜕𝑧

+
𝜕𝑤
𝜕𝑦

 =  
1
𝑏
𝜕ℎ
𝜕𝑄

�−𝐽1 +
𝜕
𝜕𝑧
𝑓(𝑧). 𝐽3. � +

1
𝑏
𝐽1  
∂h
∂Q

=
𝜕
𝜕𝑧
𝑓(𝑧). 𝐽3  

1
𝑏
𝜕ℎ
𝜕𝑄

  (18) 

Stress-Srain Relations: The stress-strain relations of the 
isotropic plate can be written as follows; 
σ𝑥  =  𝐸

1−µ2
�ε𝑥 +  µε𝑦�     (19)  

σ𝑦  =  
𝐸

1 − µ2
�µε𝑥 +  ε𝑦�   (20) 

τ𝑥𝑦  =  
𝐸(1 − µ)
2(1 − µ2)

γ𝑥𝑦  (21) 

τ𝑥𝑧  =  
𝐸(1 − µ)
2(1 − µ2)

γ𝑥𝑧  (22) 

τ𝑦𝑧  =  
𝐸(1 − µ)
2(1 − µ2)

γ𝑦𝑧  (23) 

where E and μ are the Young’s modulus and the Poisson’s 
ratio of the material respectively. 
 
Total Potential Energy: The total potential energy for the 
plate as derived in Onyechere, (2018) is given as; 
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∏ =  𝑈 + 𝑉 =
1
2
� ��𝜎𝑥ε𝑥 + 𝜎𝑦ε𝑦 + 𝜏𝑥𝑦γ𝑥𝑦 + 𝜏𝑥𝑧γ𝑥𝑧

𝑦𝑥
+ 𝜏𝑦𝑧γ𝑦𝑧]𝑑𝑥𝑑𝑦

−
𝑁𝑥
2
� � �

𝜕𝑤
𝜕𝑥
�
2

𝜕𝑥𝜕𝑦
𝑦𝑥

    (24) 

Substituting equations 19 to 23 into Equation (24)gives; 

∏ =  𝑈 + 𝑉 =
𝐸

2(1 − µ2)� � �ε𝑥2 + 2µε𝑥ε𝑦 + ε22

𝑦𝑥

+
(1 − µ)

2
γ𝑥𝑦2 +

(1 − µ)
2

γ𝑥𝑧2

+
(1 − µ)

2
γ𝑦𝑧2� 𝑑𝑥𝑑𝑦

−
𝑁𝑥
2
� � �

𝜕𝑤
𝜕𝑥
�
2

𝜕𝑥𝜕𝑦
𝑦𝑥

  (25) 

Let;  Å = � 𝑧2𝑑𝑧 = 

𝑡/2

−𝑡/2

𝑡3

12
, Å𝑔1 = � 𝑧2𝑑𝑧 

𝑡/2

−𝑡/2

,

Å𝑔2 = � [𝑧𝑓(𝑧)]𝑑𝑧 

𝑡/2

−𝑡/2

,Å𝑔3

= � [(𝑓(𝑧))2]𝑑𝑧

𝑡/2

−𝑡/2

 

Å
∝2

𝑎2
𝑔4 = � �

𝑑𝑓(𝑧)
𝑑𝑧 �

2

𝑑𝑧

𝑡/2

−𝑡/2

,

𝐷 =
Å𝐸

1 − µ2
=

𝐸𝑡3

2(1 − 𝜇2)       (26) 

D is the flexural rigidity of the plate, and ∝= 𝑎 𝑡�  is the 
span-depth ratio. 
Onyechere, (2018) in his work defined the dimensional 
shear deformation function as: 

𝑓(𝑧) = 𝑧 −
7𝑧3

5𝑡2
    (27a) 

Thus, from Equation (27a), equations (27b) to (27e) are 
obtained: 

� (𝑧2)𝑑𝑧 = 

𝑡/2

−𝑡/2

�
𝑧3

3 �
−𝑡/2

𝑡/2

= �
1
3
� �
𝑡3

8
−−

𝑡3

8 �
= 2 �

1
3
� .�

𝑡3

8 �

=
𝑡3

12
  (27b) 

�𝑓(𝑧)�2 = 𝑧2 −
14𝑧4

5𝑡2
+

49𝑧6

25𝑡4
,

� �𝑓(𝑧)�2𝑑𝑧 = �
𝑧3

3
−

14𝑧5

25𝑡2
+

7𝑧7

25ℎ4�
−𝑡/2

𝑡/2𝑡/2

−𝑡/2

 

=
253𝑡3

4800
  (27c) 

𝑧𝑓(𝑧) = 𝑧2 −
7𝑧4

5𝑡2
 ,

� 𝑧𝑓(𝑧)𝑑𝑧 = 

𝑡/2

−𝑡/2

𝑡3

12
−

7𝑡3

400
=

79𝑡3

1200
   (27d) 

�
𝑑𝑓(𝑧)
𝑑𝑧 �

2

= 1 −
42𝑧2

5𝑡2

+
441𝑧4

25𝑡4
 , ��

𝑑𝑓(𝑧)
𝑑𝑧 �

2

𝑑𝑧

𝑡
2

−𝑡2

= �𝑧 −
14𝑧3

5𝑡2
+

441𝑧5

125𝑡4�
−𝑡2

𝑡
2

=
1041𝑡
2000

  (27e) 

 
Substituting equations (14) to (18) and (26) into Equation 
(25) and multiplying each term by 𝑎

4

𝑎4
  gave the total 

potential energy functional in terms on non-dimensional 
coordinates as: 

∏ =
𝐷𝑎𝑏
2𝑎4

����𝐽12𝑔1 − 2𝐽1𝐽2𝑔2 + 𝐽22𝑔3� �
𝑑2ℎ
𝑑𝑅2�

21

0

1

0

+ �𝐽12𝑔1 − 2𝐽1𝐽3𝑔2 + 𝐽32𝑔3�
1
𝑃4 �

𝑑2ℎ
𝑑𝑄2�

2

+ �2𝐽12𝑔1 − 2𝐽1𝐽2𝑔2

− 2𝐽1𝐽3𝑔2).
1
𝑃2 �

𝑑2ℎ
𝑑𝑅2

.
𝑑2ℎ
𝑑𝑄2�

+ (1 + 𝜇)𝐽2𝐽3𝑔3.
1
𝑃2 �

𝑑2ℎ
𝑑𝑅2

.
𝑑2ℎ
𝑑𝑄2�

+ ��
1 − 𝜇

2
� �𝐽22𝑔3 + 𝐽32𝑔3�� .

1
𝑃2 �

𝑑2ℎ
𝑑𝑅2

.
𝑑2ℎ
𝑑𝑄2�

+∝2 �
1 − 𝜇

2
� . �𝐽22𝑔4� �

𝑑ℎ
𝑑𝑅

�
2

+
∝2

𝑃2
�

1 − 𝜇
2

� �𝐽32𝑔4� �
𝑑ℎ
𝑑𝑄

�
2

 � 𝑑𝑅𝑑𝑄

−
𝑎𝑏𝐽12

2
���

𝑁𝑥
𝑎2

. �
𝜕ℎ
𝜕𝑅
�
2

� 𝜕𝑅𝜕𝑄
1

0

1

0

   (28) 

Where: 

𝑔1 =  �
𝑡3

12� �
𝑡3

12�
� =  

𝑡3

12
∗

12
𝑡3

= 1,

𝑔2 =  
79𝑡3

1200 �
𝑡3

12�
� =  

79𝑡3

1200
  ∗

12
𝑡3

= 0.79    

𝑔3 =  
253𝑡3

4800 �
𝑡3

12�
� =  

253𝑡3

4800
  ∗

12
𝑡3

= 0.6325;  
∝2

𝑎2
𝑔4

=  
1041𝑡
2000 �

𝑡3

12�
� =  

1041𝑡
2000

  ∗
12
𝑡3

=
6.246
𝑡2

 

 𝑔4 =
6.246
𝑡2

∗
𝑎2

∝2 =
6.246
𝑡2

∗
𝑎2

1
∗  

t2

𝑎2
  = 6.246  (29) 

 

3 DIRECT GOVERNING EQUATION. 
Minimize the total energy functional with respect to 𝐽1;  𝐽2;  𝐽3:   
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�
𝑑∏
𝑑𝐽1

= 0,
𝑑∏
𝑑𝐽2

= 0,
𝑑∏
𝑑𝐽3

= 0  � 

Minimizing equation 28 with respect to J1, J2 and J3 
respectively gave: 
𝐷
𝑎4
��𝐾1𝑔1 +

𝐾3
𝑃4

𝑔1 +
2𝐾2
𝑃2

𝑔1� 𝐽1 + �−𝐾1𝑔2 +
𝐾2
𝑃2

𝑔2� 𝐽2

+ �−
𝐾3
𝑃4

𝑔2 −
𝐾2
𝑃2

𝑔2� 𝐽3� =
𝑁𝑥
𝑎2
𝐾4𝐽1       (30𝑎) 

𝐷
𝑎4 �

�−𝐾1𝑔2 −
𝐾2
𝑃2

𝑔2� 𝐽1

+ �𝐾1𝑔3 + �
1 − 𝜇
2𝑃2

�𝐾2𝑔3

+ �
1 − 𝜇

2
� ∝2 𝐾4𝑔4� 𝐽2 + ��

1 + 𝜇
2𝑃2

�𝐾2𝑔3� 𝐽3�

= 0  (30𝑏) 
𝐷
𝑎4 �

�−
𝐾3
𝑃4

𝑔2 −
𝐾2
𝑃2

𝑔2� 𝐽1 + ��
1 + 𝜇
2𝑃2

�𝐾2𝑔3� 𝐽2

+ �
𝐾3
𝑃4

𝑔3 + �
1 − 𝜇
2𝑃2

�𝐾2𝑔3

+ �
1 − 𝜇
2𝑃2

� ∝2 𝐾5𝑔4� 𝐽3�  = 0   (30𝑐) 

Where; 𝐾1 = ���
𝜕2ℎ
𝜕𝑅2�

2

𝜕𝑅𝜕𝑄
1

0

1

0

,

𝐾2 = ���
𝜕2ℎ
𝜕𝑅2

.
𝜕2ℎ
𝜕𝑄2� 𝜕𝑅𝜕𝑄

1

0

1

0

,

𝐾3 = ���
𝜕2ℎ
𝜕𝑄2�

2

𝜕𝑅𝜕𝑄
1

0

1

0

,  

𝐾4 = ���
∂h
∂R
�
2

𝜕𝑅𝜕𝑄
1

0

1

0

, 𝐾5 = ���
∂h
∂Q
�
2

𝜕𝑅𝜕𝑄
1

0

1

0

            

Re-writing Equations (30a), (30b) and (30c) in matrix form, 
yields Equation (31) 

�
𝐿11 𝐿12 𝐿13
𝐿21 𝐿22 𝐿23
𝐿31 𝐿32 𝐿33

� �
𝐽1
𝐽2
𝐽3
� =

𝑎4

𝐷
�

𝑁𝑥
𝑎2
𝐾4

0
0

� �
𝐽1
𝐽2
𝐽3
�   (31) 

Equation (31) is the direct governing Equation for thick 
rectangular plates (using traditional third order shear 
deformation theory) of arbitrary boundary conditions. 

Where; 𝐿11 = 𝑔1 �𝐾1 +
2𝐾2
𝑃2

+
𝐾3
𝑃4
� , 𝐿12 = −𝑔2 �𝐾1 +

𝐾2
𝑃2
� , 𝐿13

= −𝑔2 �
𝐾2
𝑃2

+
𝐾3
𝑃4
� , 𝐿21 = 𝐿12,  

𝐿22 = 𝐾1𝑔3 + �
1 − 𝜇
2𝑃2

�𝐾2𝑔3 + �
1 − 𝜇

2
� ∝2 𝐾4𝑔4, 𝐿23

= �
1 + 𝜇
2𝑃2

�𝐾2𝑔3,  𝐿31 = 𝐿13,  𝐿32 = 𝐿23, 

𝐿33 = �
1 − 𝜇
2𝑃2

�𝐾2𝑔3 +
𝐾3
𝑃4

𝑔3 + �
1 − 𝜇
2𝑃2

� ∝2 𝐾5𝑔4  (32) 
 
The direct governing equation derived and presented in 
Equation (31) can be written as; 

�
𝑇11 𝑇12 𝑇13
𝑇21 𝑇22 𝑇23
𝑇31 𝑇32 𝑇33

� �
𝐽1
𝐽2
𝐽3
� =

𝑎2𝑁𝑥𝑐𝑟
𝐷

�
1
0
0
� �
𝐽1
𝐽2
𝐽3
�   (33a) 

Where;  𝑇𝑖𝑗 = 𝐿𝑖𝑗 ∗ 1
𝐾4�             

Equation (33a) is not coupled and thus, can be separated as:  

[𝑇11 𝑇12 𝑇13] �
𝐽1
𝐽2
𝐽3
� =

𝑎2𝑁𝑥𝑐𝑟
𝐷

𝐽1  (33b) 

�𝑇22 𝑇23
𝑇32 𝑇33

� �𝐽2𝐽3
� = − �𝑇21𝑇31

� 𝐽1  (33c) 

Solving Equation (33c) using substitution method yields; 

𝐽2 = �
−𝑇23.𝑇31 + 𝑇33.𝑇21
𝑇322 − 𝑇33.𝑇22

� 𝐽1,               𝐽3

= �
−𝑇23.𝑇21 + 𝑇22.𝑇31
𝑇322 − 𝑇33.𝑇22

� 𝐽1  (34) 

Substituting Equation (34) into equation (33b) gives; 

𝑇11 + 𝑇12. �
−𝑇23.𝑇31 + 𝑇33.𝑇21
𝑇322 − 𝑇33.𝑇22

� + 𝑇13. �
−𝑇23.𝑇21 + 𝑇22.𝑇31
𝑇322 − 𝑇33.𝑇22

�

=  
𝑎2𝑁𝑥𝑐𝑟
𝐷

 = 𝜃𝑎  (35) 
𝑊ℎ𝑒𝑟𝑒;𝜃𝑎

=
𝑎2𝑁𝑥𝑐𝑟
𝐷

 is a non
− dimensional critical buckling load parameter,   (36) 
 

4. NUMERICAL PROBLEMS  
The critical buckling load of the thick rectangular SSSS 
plate used in this work was sought. The stiffness coefficient 
obtained using the shape function, h = (R – 2R3 + R4)(Q – 
2Q3 +Q4) are: 

 𝐾1 = ���
𝜕2ℎ
𝜕𝑅2�

2

𝜕𝑅𝜕𝑄
1

0

= 0.23619
1

0

;    𝐾2

= ���
𝜕2ℎ
𝜕𝑅2

.
𝜕2ℎ
𝜕𝑄2� 𝜕𝑅𝜕𝑄

1

0

1

0

= 0.23592 

𝐾3 = ���
𝜕2ℎ
𝜕𝑄2�

2

𝜕𝑅𝜕𝑄
1

0

1

0

 = 0.23619;   𝐾4 = ���
∂h
∂R
�
2

𝜕𝑅𝜕𝑄
1

0

1

0

= 0.0239; 𝐾5 = ���
∂h
∂Q
�
2

𝜕𝑅𝜕𝑄
1

0

1

0
= 0.0239  (37) 

Substituting these stiffness coefficients (Ki) and Equation 29 
(gi) into equation 21 yields the T values (Tij).  
Substituting these T values into Equation (35) yields the 
numerical critical buckling load parameters of the plate at 
various aspect ratios and span-depth ratios. 
5 Results and Discussions 
The critical buckling loads as determined herein for 
different aspect ratios and span-depth ratios are presented 
on Table 1.  
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Table 1:  Results of the Present Study Compared with the Results of other Researchers for SSSS thick Plate.  

 

                          𝑷 = 𝒃 𝒂�  
  𝑵𝒙𝒄𝒓 = 𝜽𝒂 𝟏𝟐(𝟏 − 𝝁𝟐)⁄  

𝒂
𝒕�  Theory 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

5 

Present Study (P.S) 2.9556 1.6255 1.2408 1.0783 0.9936 0.9455 0.9135 
Gunjal et.al (2015), (G) 2.9490 1.6620 1.2380 1.0760 0.9920 0.9430 0.9110 
Sayyad and Ghugal (2012), (S) 3.0260 1.6540 1.2590 1.0930 1.0070 0.9570 0.9250 
% Difference btw P.S & G 0.2238 2.1961 0.2262 0.2138 0.1613 0.2651 0.2744 
% Difference btw P.S & S 2.3265 1.7231 1.4456 1.3449 1.3307 1.2017 1.2432 

10 

Present Study (P.S) 3.4249 1.8155 1.3668 1.1790 1.0852 1.0279 0.9936 
Gunjal et.al (2015), (G) 3.4220 1.8120 1.3640 1.1780 1.0820 1.0260 0.9910 
Sayyad and Ghugal (2012), (S) 3.4540 1.8250 1.3730 1.1850 1.0890 1.0320 0.9970 
% Difference btw P.S & G 0.0847 0.1932 0.2053 0.0849 0.2957 0.1852 0.2624 
% Difference btw P.S & S 0.8425 0.5205 0.4516 0.5063 0.3489 0.3973 0.3410 

20 

Present Study (P.S) 3.5691 1.8704 1.4034 1.2088 1.1103 1.0508 1.0142 
Gunjal et.al (2015), (G) 3.5650 1.8670 1.4000 1.2060 1.1070 1.0490 1.0130 
Sayyad and Ghugal (2012), (S) 3.5820 1.8740 1.4050 1.2110 1.1110 1.0530 1.0160 
% Difference btw P.S & G 0.1150 0.1821 0.2429 0.2322 0.2981 0.1716 0.1185 
% Difference btw P.S & S 0.3601 0.1921 0.1139 0.1817 0.0630 0.2089 0.1772 

50 

Present Study (P.S) 3.6103 1.8864 1.4125 1.2179 1.1172 1.0577 1.0211 
Gunjal et.al (2015), (G) 3.6070 1.8830 1.4120 1.2160 1.1140 1.0570 1.0200 
Sayyad and Ghugal (2012), (S) 3.6210 1.8890 1.4150 1.2190 1.1180 1.0590 1.0220 
% Difference btw P.S & G 0.0915 0.1806 0.0354 0.1563 0.2873 0.0662 0.1078 
% Difference btw P.S & S 0.2955 0.1376 0.1767 0.0902 0.0716 0.1228 0.0881 

100 

Present Study (P.S) 3.6172 1.8887 1.4148 1.2179 1.1172 1.0600 1.0234 
Gunjal et.al (2015), (G) 3.6130 1.8850 1.4120 1.2160 1.1150 1.0570 1.0200 
Sayyad and Ghugal (2012), (S) 3.6250 1.8910 1.4160 1.2190 1.1190 1.0600 1.0230 
% Difference btw P.S & G 0.1162 0.1963 0.1983 0.1563 0.1973 0.2838 0.3333 
% Difference btw P.S & S 0.2152 0.1216 0.0847 0.0902 0.1609 0.0000 0.0391 

 
From Table 1, it is observed that at the same span-depth 
ratio (a/t), the non-dimensional critical buckling load 
parameter decreases as the aspect ratio P = b/a increases 
having the highest value at P = 1 (square plate)..Also, at the 
same aspect ratio P = b/a, the non-dimensional critical 
buckling load parameter increases as the span-depth ratio 
increases. This indicates that the capacity of the plate to 
resist buckling decreases as the span-depth ratio, �∝= 𝑎 𝑡� � 
increases. The percentage difference between the results of 
the present study and that of Gunjal et.al (2015), has a 
maximum value of 2.1961 at span – depth ratio of 5 and a 
minimum value of 0.0354 at span – depth ratio of 50. The 
percentage difference between the results of the present 
study and that of Sayyad and Ghugal (2012), has a 
maximum value of 2.3265 at span – depth ratio of 5, and a 
minimum value of 0.0000 at span – depth ratio of 100. This 
shows that as the span – depth ratio increases, the results of 
the present study becomes closer to that of Sayyad and 
Ghugal (2012). These differences being less than 5% are 
quite acceptable in statistics as being close. Thus, the 
present study provides a good solution for the buckling 
analysis of isotropic thick rectangular SSSS plate. 

6. CONCLUSIONS. 
Based on the results obtained from the present study, the 
following conclusions could be drawn: 
(i) The general governing simultaneous equations 
developed and used in this work offer efficient and 
satisfactory results for buckling analysis of isotropic thick 
rectangular plates simply supported at its four edges. 
(ii) The simple analytical equations developed and used in 
this work offer quick and satisfactory results for results for 
buckling analysis of isotropic thick rectangular plates 
simply supported at its four edges. 
(iii) The critical buckling loads obtained in this work are 
very reliable as they agree with the works of other 
researchers. Thus, they can be used confidently by future 
researchers to design rectangular thick plates successfully. 
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